UNCONVENTIONAL MACHINING PROCESS – UNIT 1
INTRODUCTION

Prepared by
S. SENTHIL KUMAR
AP / MECH
SVCET
INTRODUCTION

• Conventional machining process
 – Metal is removed by means of tool which is harder than work piece and they both are in contact with each other

• Demerits of conventional machining process
 – Disposal and recycling of the chips are difficult and tedious process
 – Large cutting forces are involved in this process
NEED FOR UCM

• Unconventional manufacturing process
 – Unconventional machining process
 – Unconventional forming process

• Need for unconventional machining process
 – Harder and difficult to machine materials, can be machined easily and precisely
CLASSIFICATION OF UCM

• Classification of UCM
 – Based on type of energy required to shape the material
 • Thermal energy methods
 • Electrical energy methods
 • Electro chemical energy methods
 • Chemical energy methods
 • Mechanical energy methods
 – Based on mechanisms involved
 • erosion
 • Ionic dissolution
 • vaporization
– Based on the source of energy required for material removal
 • Hydrostatic pressure
 • High current density
 • High voltage
 • Ionized material

– Based on medium of transfer of energies
 • High voltage particles
 • Electrolyte
 • Electron
 • Hot gases
Process Selection

• Points to be considered for correct selection of UCM are
 – Physical parameters
 – Shapes to be machined
 – Process capability or machining characteristics
 – Economic consideration
Physical parameters

<table>
<thead>
<tr>
<th>Parameters</th>
<th>ECM</th>
<th>EDM</th>
<th>EBM</th>
<th>LBM</th>
<th>PAM</th>
<th>USM</th>
<th>AJM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potential, V</td>
<td>5 – 30</td>
<td>50 – 500</td>
<td>200×10^3</td>
<td>4.5×10^3</td>
<td>250</td>
<td>220</td>
<td>220</td>
</tr>
<tr>
<td>Current, A</td>
<td>40,000</td>
<td>15 – 500</td>
<td>0.001</td>
<td>2</td>
<td>600</td>
<td>12</td>
<td>1.0</td>
</tr>
<tr>
<td>Power, KW</td>
<td>100</td>
<td>2.70</td>
<td>0.15</td>
<td>20</td>
<td>220</td>
<td>2.4</td>
<td>0.22</td>
</tr>
<tr>
<td>Gap, mm</td>
<td>0.5</td>
<td>0.05</td>
<td>100</td>
<td>150</td>
<td>7.5</td>
<td>0.25</td>
<td>0.75</td>
</tr>
<tr>
<td>Medium</td>
<td>Electrolyte</td>
<td>Dielectric Fluid</td>
<td>Vacuum</td>
<td>Air</td>
<td>Argon or hydrogen or nitrogen</td>
<td>Abrasive grains & water</td>
<td>N$_2$ or CO$_2$ or Air</td>
</tr>
<tr>
<td>Work Material</td>
<td>Difficult to machine materials</td>
<td>Tungsten Carbides and electrically conductive materials</td>
<td>All materials</td>
<td>All materials</td>
<td>All materials which conduct electricity</td>
<td>Tungsten Carbide, Glass, Quartz</td>
<td>Hard and brittle materials</td>
</tr>
</tbody>
</table>
Shapes to be machined

<table>
<thead>
<tr>
<th>Shape Description</th>
<th>Suitable Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>For producing micro holes</td>
<td>LBM is best suited</td>
</tr>
<tr>
<td>For producing small holes</td>
<td>EBM is well suited</td>
</tr>
<tr>
<td>For deep holes (L/D > 20) and contour machining</td>
<td>ECM is best suited</td>
</tr>
<tr>
<td>For shallow holes</td>
<td>USM and EDM are well suited</td>
</tr>
<tr>
<td>For precision through cavities in work pieces</td>
<td>USM and EDM are best suited</td>
</tr>
<tr>
<td>For honing</td>
<td>ECM is well suited</td>
</tr>
<tr>
<td>For etching small portions</td>
<td>ECM and EDM are well suited</td>
</tr>
<tr>
<td>For grinding</td>
<td>AJM and EDM are best suited</td>
</tr>
<tr>
<td>For deburring</td>
<td>USM and AJM are well suited</td>
</tr>
<tr>
<td>For threading</td>
<td>EDM is best suited</td>
</tr>
<tr>
<td>For clean, rapid cuts and profiles</td>
<td>PAM is well suited</td>
</tr>
<tr>
<td>For shallow pocketing</td>
<td>AJM is well suited</td>
</tr>
</tbody>
</table>
Process capability

<table>
<thead>
<tr>
<th>Process</th>
<th>Material Removal Rate (mm³/s) MRR</th>
<th>Process Capability</th>
<th>Accuracy</th>
<th>Specific Power (KW/cm³/min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LBM</td>
<td>0.10</td>
<td>0.4 to 6.0</td>
<td>25</td>
<td>2700</td>
</tr>
<tr>
<td>EBM</td>
<td>0.15 to 40</td>
<td>0.4 to 6.0</td>
<td>25</td>
<td>450</td>
</tr>
<tr>
<td>EDM</td>
<td>15 to 80</td>
<td>0.25</td>
<td>10</td>
<td>1.8</td>
</tr>
<tr>
<td>ECM</td>
<td>27</td>
<td>0.2 to 0.8</td>
<td>50</td>
<td>7.5</td>
</tr>
<tr>
<td>PAM</td>
<td>2500</td>
<td>Rough</td>
<td>250</td>
<td>0.90</td>
</tr>
<tr>
<td>USM</td>
<td>14</td>
<td>0.2 to 0.7</td>
<td>7.5</td>
<td>9.0</td>
</tr>
<tr>
<td>AJM</td>
<td>0.014</td>
<td>0.5 to 1.2</td>
<td>50</td>
<td>312.5</td>
</tr>
</tbody>
</table>
Process economy

<table>
<thead>
<tr>
<th>Process</th>
<th>Capital Cost</th>
<th>Tooling and requirement</th>
<th>Power requirement</th>
<th>Efficiency</th>
<th>Total Consumption</th>
</tr>
</thead>
<tbody>
<tr>
<td>EDM</td>
<td>Medium</td>
<td>High</td>
<td>Low</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>CHM</td>
<td>Medium</td>
<td>Low</td>
<td>High</td>
<td>Medium</td>
<td>Very low</td>
</tr>
<tr>
<td>ECM</td>
<td>Very High</td>
<td>Medium</td>
<td>Medium</td>
<td>Low</td>
<td>Very Low</td>
</tr>
<tr>
<td>AJM</td>
<td>Very Low</td>
<td>Low</td>
<td>Low</td>
<td>High</td>
<td>Low</td>
</tr>
<tr>
<td>USM</td>
<td>High</td>
<td>High</td>
<td>Low</td>
<td>High</td>
<td>Medium</td>
</tr>
<tr>
<td>EBM</td>
<td>High</td>
<td>Low</td>
<td>Low</td>
<td>Very High</td>
<td>Very Low</td>
</tr>
<tr>
<td>LBM</td>
<td>Medium</td>
<td>Low</td>
<td>Very Low</td>
<td>Very High</td>
<td>Very Low</td>
</tr>
<tr>
<td>PAM</td>
<td>Very Low</td>
<td>Low</td>
<td>Very Low</td>
<td>Very Low</td>
<td>Very Low</td>
</tr>
<tr>
<td>Conventional Machining</td>
<td>Very low</td>
<td>Low</td>
<td>Low</td>
<td>Very Low</td>
<td>Low</td>
</tr>
</tbody>
</table>
• Advantages of UCM
 – Increases productivity
 – Reduces no. of rejected components
 – Close tolerance is possible
 – Toll material need not be harder than work piece
 – Machined surface does not have residual stress

• Limitations of UCM
 – More expensive
 – MRR is slow
UNCONVENTIONAL MACHINING PROCESS – UNIT 2
Mechanical Energy Based process

Prepared by
S. Senthil Kumar
AP / MECH
SVCET
Mechanical Energy Based process

• Material is removed by mechanical erosion of work piece material
 – Abrasive Jet Machining (AJM)
 – Water Jet Machining (WJM)
 – Ultrasonic Machining (USM)
ABRASIVE JET MACHINING (AJM)

• Principle
 – A high speed stream of abrasive particles mixed with high pressure air or gas are injected through a nozzle on the workpiece to be machined.
AJM

• Construction and working principle
AJM

• Process parameters
 – Mass Flow rate
 – Abrasive grain size
 – Gas pressure
 – Velocity of abrasive particles
 – Mixing ratio
 – Nozzle tip clearance
AJM

Characteristics

<table>
<thead>
<tr>
<th>Work material</th>
<th>Hard and brittle materials</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abrasive</td>
<td>Al₂O₃, SiC, glass powder</td>
</tr>
<tr>
<td>Size of abrasive</td>
<td>Around 25 microns</td>
</tr>
<tr>
<td>Flow rate</td>
<td>2 to 20 g/min</td>
</tr>
<tr>
<td>Medium</td>
<td>N₂, CO₂ or air</td>
</tr>
<tr>
<td>Velocity</td>
<td>125 to 300 m/s</td>
</tr>
<tr>
<td>Pressure</td>
<td>2 to 8 kg/centimetre square</td>
</tr>
<tr>
<td>Nozzle material</td>
<td>Tungsten carbide or synthetic sapphire</td>
</tr>
<tr>
<td>Life of nozzle</td>
<td>WC – 12 to 12 hrs</td>
</tr>
<tr>
<td></td>
<td>Sapphire – 300 hrs</td>
</tr>
<tr>
<td>Nozzle tip clearance</td>
<td>0.25mm to 15mm</td>
</tr>
<tr>
<td>Tolerance</td>
<td>±0.05 mm</td>
</tr>
<tr>
<td>Machining operation</td>
<td>Drilling, deburring, cleaning</td>
</tr>
</tbody>
</table>
AJM

• Applications
 – To machine hard and brittle materials
 – Fine drilling and micro welding
 – Machining of semiconductors
 – Machining of intricate profiles
 – Surface etching
 – Surface preparation
 – Cleaning and polishing of plastics, nylon and teflon
AJM

• Advantages
 – Process is suitable to cut all materials
 – Even diamond can be machined using diamond abrasives
 – No direct contact between tool and workpiece
 – Low initial investment
 – Good surface finish
 – Used to cut intricate hole shapes
AJM

• Disadvantages
 – MRR is slow
 – Soft material cannot be machined
 – Machining accuracy is poor
 – Nozzle wear rate is high
 – Abrasive powder once used can never be used again
 – Requires some kind of dust collection system
 – Cleaning is essential after the operation
WATER JET MACHINING (WJM)

- **Principle**
 - When high velocity of water jet comes out of the nozzle and strikes the material, its kinetic energy gets converted into pressure energy inducing a high stress in the work material. When this stress exceeds the ultimate shear stress of the material, small chips of the material get loosened and fresh surface is exposed.

- Used to cut paper boards, plastics, wood, fibre glass, leather.
WJM

• Construction and working

Accumulator → Control Valve

Intensifier → Flow Regulator

Pump

Reservoir

Nozzle

Water Jet

Workpiece
WJM

• Process parameters
 – Material removal rate
 – Geometry and surface finish of work material
 – Wear rate of nozzle

• Disadvantages
 – Initial cost is high
 – Noisy operation
 – Difficult to machine hard material
WJM

- **Characteristics**

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Work material</td>
<td>Soft and non-metallic materials</td>
</tr>
<tr>
<td>Tool</td>
<td>Water or water with additives</td>
</tr>
<tr>
<td>Additives</td>
<td>Glycerin, polyethylene oxide</td>
</tr>
<tr>
<td>Pressure of water</td>
<td>100 to 1000 Mpa</td>
</tr>
<tr>
<td>Mass flow rate</td>
<td>8 lit/min</td>
</tr>
<tr>
<td>Power</td>
<td>45 KW</td>
</tr>
<tr>
<td>MRR</td>
<td>0.6 Cu.m/S</td>
</tr>
<tr>
<td>Feed rate</td>
<td>1 to 4 mm/s</td>
</tr>
<tr>
<td>Nozzle material</td>
<td>Tungsten Carbide, synthetic sapphire</td>
</tr>
<tr>
<td>Stand off distance</td>
<td>2 to 50 mm</td>
</tr>
</tbody>
</table>
WJM

• Advantages
 – Water is used as energy medium and hence it is cheap, non-toxic and easy to dispose
 – Low operating cost
 – Low maintenance cost
 – Work area remains clean and dust free
 – Easily automated
 – No thermal damage to work
ULTRASONIC MACHINING (USM)

• Principle
 – A slurry of small abrasive particles are forced against the work piece by means of a vibrating tool and it causes the removal of metal from the work piece in the form of extremely small chips

 – Also known as ultrasonic grinding or impact grinding

 – Ultrasonic refers to high frequency – above 20khz
USM

• Construction and working
USM

- Process parameters
 - MRR
 - Tool material
 - Work material
 - Surface finish
 - Tool wear rate
 - Abrasive material & abrasive slurry
USM

Characteristics

<table>
<thead>
<tr>
<th>Category</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abrasive</td>
<td>Boron carbide, silicon carbide, diamond, aluminum oxide</td>
</tr>
<tr>
<td>Abrasive slurry</td>
<td>Abrasive grains + water (20 – 30 %)</td>
</tr>
<tr>
<td>Vibration frequency</td>
<td>20 to 30 KHz</td>
</tr>
<tr>
<td>Amplitude</td>
<td>25 to 100 microns</td>
</tr>
<tr>
<td>Wear ratio</td>
<td>1.5:1 for tungsten carbide, 100:1 for glass, 50:1 for quartz, 75:1 for ceramics, 1:1 for steel</td>
</tr>
<tr>
<td>Tool material</td>
<td>Low carbon steel, stainless steel</td>
</tr>
<tr>
<td>Work material</td>
<td>WC, Germanium, glass, quartz</td>
</tr>
<tr>
<td>Surface finish</td>
<td>0.2 to 0.7 micron</td>
</tr>
</tbody>
</table>
USM

• Advantages
 – Extremely hard and brittle materials can be machined easily
 – Noiseless operation
 – Cost of metal removal is low
 – No heat generation on this process
 – Equipments are safe to operate
 – No conductive materials can easily be machined
USM

- Disadvantages
 - MRR is slow
 - Softer materials are difficult to machine
 - Wear rate of tool is high
 - Initial setup cost is high
 - High power consumption
 - Tool cost is high
 - Abrasive should be replaced periodically
USM

• Applications
 – Holes as small as 0.1 mm can be drilled
 – Precise and intricate shaped articles can be machined
 – Efficiently applied to machine glass, ceramics, tungsten
 – Used for making tungsten carbide and diamond wire drawing dies and dies for forging and extrusion process
USM

• Limitations
 – Under ideal conditions
 • Penetration rate – 5 cu.m/min
 • Power – 500 to 1000 W
 – MRR on brittle materials – 0.18 cu.m/J
 – Hole Tolerance – 25 microns
 – Surface finish – 0.2 to 0.7 microns

• Recent developments
 – Instead of using slurry, the tool is impregnated with diamond dust
 – In some cases it is impossible to rotate the tool, so the work piece will be rotated in some cases
Electrical Energy based processes

• Electrical energy is directly used to cut the material to get the final shape and size

 – Electrical discharge machining (EDM)
 – Wire cut Electrical Discharge Machining (WC EDM)
Electrical Discharge Machining (EDM)

• Principle
 – Metal is removed by producing powerful electric spark discharge between the tool (cathode) and the work material (anode)

 – Also known as Spark erosion machining or electro erosion machining
EDM

• Construction and Working
EDM

• Dielectric Fluid
 – Fluid medium which doesn’t conduct electricity
 – Dielectric fluids generally used are paraffin, white spirit, kerosene, mineral oil
 – Must freely circulate between the work piece and tool which are submerged in it
 – Eroded particles must be flushed out easily
 – Should be available @ reasonable price
 – Dielectric fluid must be filtered before reuse so that chip contamination of fluid will not affect machining accuracy
EDM

• Functions of dielectric fluid
 – Acts as an insulating medium
 – Cools the spark region & helps in keeping the tool and work piece cool
 – Carries away the eroded material along with it
 – Maintains a constant resistance across the gap
 – Remains electrically non-conductive
EDM

• Tool materials and tool wear
 – Metallic materials
 • Copper, Brass, Copper-tungsten
 – Non metallic materials
 • graphite
 – Combination of metallic and non metallic
 • Copper – graphite
 – Three most commonly used tool materials are
 • Copper, graphite, copper-tungsten
EDM

• Tool materials
 – Graphite
 • Non-metallic
 • Can be produced by molding, milling, grinding
 • Wide range of grades are available for wide applications
 • It is abrasive and gives better MRR and surface finish
 • But costlier than copper
 – Copper
 • Second choice for tool material after graphite
 • Can be produced by casting or machining
 • Cu tools with very complex features are formed by chemical etching or electroforming
 – Copper-tungsten
 • Difficult to machine and also has low MRR
 • Costlier than graphite and copper
EDM

• Selection of cutting tool is influenced by
 – Size of electrode
 – Volume of material to be removed
 – Surface finish required
 – Tolerance allowable
 – Nature of coolant application

• Basic requirement of any tool materials are
 – It should have low erosion rate
 – Should be electrically conductive
 – Should have good machinability
 – Melting point of tool should be high
 – Should have high electron emission
EDM

• Tool wear
 – Tool does not come in contact with the work
 – So, life of tool is long and less wear takes place

\[
\text{Wear ratio} = \frac{\text{vol. of work material removed}}{\text{vol. of electrode consumed}}
\]

• Tool wear ratio for
 – Brass electrode is 1:1
 – Copper of 2:1
 – Copper tungsten is 8:1
 – Graphite varies between 5 and 50:1
EDM

• Metal Removal Rate (MRR)
 – Defined as volume of metal removed per unit time
 – Depends upon current intensity and it increases with current
 – Usually a rough cut with heavy current and finishing cut with a less current is performed
 – MRR up to 80Cu.mm/S, can be obtained
 – Surface finish of 0.25 microns is obtained
 – Tolerances of the order of ±0.05 to 0.13 mm are commonly achieved
EDM

• Factors affecting MRR
 – Increases with forced circulation of dielectric fluid
 – Increases with capacitance
 – Increases up to an optimal value of work-tool gap, after that it drops suddenly
 – Increases up to an optimum value of spark discharge time, after that it decreases
 – MRR is maximum, when the pressure is below atmospheric pressure
EDM

- Power generating circuits
 - Resistance capacitance circuit (RC Circuit)
 - R-C-L Circuit
EDM

– Rotary pulse generator circuit

[Diagram of a rotary impulse generator for EDM]

– Controlled pulse generator circuit

[Diagram of a controlled pulse circuit for EDM]
EDM

• Process Parameters
 – Operating parameters
 • Electrical energy
 • Voltage
 • Time interval
 • Instantaneous current
 • Torque
 • Pulse width
 – Taper
 – Surface finish
 • Energy of the pulse
 • Frequency of operation
 – Current density
EDM

Characteristics of EDM

<table>
<thead>
<tr>
<th>Description</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metal removal technique</td>
<td>By using powerful electric spark</td>
</tr>
<tr>
<td>Work material</td>
<td>Electrically conductive materials</td>
</tr>
<tr>
<td>Tool material</td>
<td>Copper, alloy of Zinc, yellow brass, Copper-Tungsten</td>
</tr>
<tr>
<td>MRR</td>
<td>15 to 80 Cu.mm/S</td>
</tr>
<tr>
<td>Spark gap</td>
<td>0.005 to 0.05 mm</td>
</tr>
<tr>
<td>Spark frequency</td>
<td>200 to 500 KHz</td>
</tr>
<tr>
<td>Volts</td>
<td>30 to 250 V</td>
</tr>
<tr>
<td>Current</td>
<td>5 to 60 A</td>
</tr>
<tr>
<td>Temperature</td>
<td>10,000 degree celcius</td>
</tr>
<tr>
<td>Dielectric fluid</td>
<td>Petroleum based HC fluids, Paraffin, White Spirit</td>
</tr>
</tbody>
</table>
EDM

• Applications
 – Production of complicated and irregular profiles
 – Thread cutting in jobs
 – Drilling of micro holes
 – Helical profile drilling
 – Curved hole drilling
 – Re-sharpening of cutting tool and broaches
 – Re-machining of die cavities without annealing

• Recent developments
 – EDM change from using relaxation circuit to faster and more efficient impulse circuits
 – Instead of using Cu; WC is used as electrode
EDM

• Advantages
 – Can be used to machine various conductive materials
 – Gives good surface finish
 – Machining of very thin section is possible
 – Does not leave any chips or burrs on the workpiece
 – High accuracy is obtained
 – Fine holes can be easily drilled
 – Process once started does not need constant operators attention
 – It is a quicker process
 – Well suited to machine complicated components
EDM

• Disadvantages
 – Used to machine only electrically conductive materials
 – Non-metallic compounds such as plastics, ceramics or glass can never be machined
 – Suitable for machining small work pieces
 – Electrode wear and overcut are serious problems
 – Perfect square corners can not be machined
 – MRR is slow
 – Power requirement is high
 – The surface machined has been found to have micro holes
Wire Cut Electro-Discharge Machining (WC EDM)
WC EDM

[Diagram showing a wire EDM process with labeled parts such as filter, pump, workpiece, wire guide, wire pulley, spark gap, wire diameter, and slot (kerf).]
WC EDM

• Applications
 – Best suited for production of gears, tools, dies, rotors, turbine blades and cams

• Disadvantages
 – Capital cost is high
 – Cutting rate is slow
 – Not suitable for large work pieces
WC EDM

- Features / Advantages of WC EDM
 - Manufacturing electrode
 - Electrode wear
 - Surface finishing
 - Complicated shapes
 - Time utilization
 - Straight holes
 - Rejection
 - Economical
 - Cycle time
 - Inspection time
Difference between EDM & WC EDM

<table>
<thead>
<tr>
<th>S. No</th>
<th>Wire Cut EDM</th>
<th>EDM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Very thin wire made of brass is used as tool</td>
<td>Expensive alloy of silver and tungsten are used as electrode</td>
</tr>
<tr>
<td>2</td>
<td>Whole work piece is not submerged in dielectric medium</td>
<td>Whole work piece is submerged in dielectric medium</td>
</tr>
<tr>
<td>3</td>
<td>Easy to machine complex two dimensional profiles</td>
<td>Difficult to cut complex two dimensional profiles</td>
</tr>
</tbody>
</table>